人脸识别

人脸识别,基于人脸部特征音信识别身份的浮游生物识别技巧。摄像机、摄像头采撷人脸图像或录制流,自动物检疫验、追踪图像中脸部,做脸部相关技艺管理,人脸检查评定、人脸关键点检查实验、人脸验证等。《早稻田科学和技术评价》(MIT
Technology
Review),20一七年天下10大突破性技巧榜单,支付宝“刷脸支付”(Paying with Your
Face)入围。

上学笔记TF05八:人脸识别,学习笔记tf0伍二十位脸

人脸识别,基于人脸部特征音讯识别身份的古生物识别技巧。摄像机、录像头采撷人脸图像或摄像流,自动物检疫查实验、追踪图像中脸部,做脸部相关技术管理,人脸检查评定、人脸关键点检查测试、人脸验证等。《西弗吉尼亚理工技(science and technology)评价》(MIT
Technology
Review),20一7年全球十大突破性本事榜单,支付宝“刷脸支付”(Paying with Your
Face)入围。

人脸识别优势,非强制性(搜聚格局不轻易被发觉,被识别人脸图像可积极赢得)、非接触性(用户无需与设备接触)、并发性(可同期四个人脸检查测试、追踪、识别)。深度学习前,人脸识别双手续:高维人工特征提取、降维。守旧人脸识别本事基于可知光图像。深度学习+大数量(海量有标记人脸数据)为人脸识别领域主流才能路子。神经互连网人脸识别手艺,大批量样本图像磨炼识别模型,无需人工选用特征,样本练习进程自行学习,识别正确率能够达到99%。

人脸识别技巧流程。

人脸图像收集、质量评定。人脸图像收集,录像头把人脸图像搜聚下来,静态图像、动态图像、区别职务、分歧表情。用户在采集设备拍报范围内,搜聚设置自动寻找并拍戏。人脸检查实验属于目的检查实验(object
detection)。对要检验对象对象可能率总括,获得待检查测试对象特征,建设构造目的检验模型。用模子相称输入图像,输出相称区域。人脸检测是人脸识别预管理,正确标定人脸在图像的岗位大小。人脸图像情势特点丰硕,直方图特征、颜色特征、模板特征、结构特征、哈尔特征(Haar-like
feature)。人脸检验挑出有用新闻,用特色检验脸部。人脸检验算法,模板相称模型、Adaboost模型,Adaboost模型速度。精度综合质量最棒,训练慢、检验快,可直达摄像流实时检查测试效果。

人脸图像预管理。基于人脸检查实验结果,管理图像,服务特征提取。系统获得人脸图像遭到种种条件限制、随机困扰,需缩放、旋转、拉伸、光线补偿、灰度转换、直方图均衡化、标准化、几何校勘、过滤、锐化等图像预管理。

人脸图像特征提取。人脸图像新闻数字化,人脸图像调换为1串数字(特征向量)。如,眼睛左侧、嘴唇左边、鼻子、下巴地方,特征点间欧氏距离、曲率、角度提收取特色分量,相关特征连接成长特征向量。

人脸图像相配、识别。提取人脸图像特点数据与数据仓库储存款和储蓄人脸特征模板寻觅相配,遵照相似程度对身份新闻进行判别,设定阈值,相似度凌驾阈值,输出相称结果。确认,1对一(一:1)图像比较,评释“你便是你”,金融核算身份、音信安全球。辨认,1对多(1:N)图像相称,“N人中找你”,摄像流,人走进识别范围就成功辨认,安全防御领域。

人脸识别分类。

人脸检查实验。质量评定、定位图片人脸,重临高业饿啊人脸框坐标。对人脸剖析、管理的第3步。“滑动窗口”,选取图像矩形区域作滑动窗口,窗口中领取特征对图像区域描述,依照特征描述决断窗口是不是人脸。不断遍历供给注重窗口。

人脸关键点检查实验。定位、再次来到人脸五官、概况关键点坐标地点。人脸轮廓、眼睛、眉毛、嘴唇、鼻子轮廓。Face++提供高达十6点关键点。人脸关键点定位技能,级联形回归(cascaded
shape regression,
CSHighlander)。人脸识别,基于DeepID网络布局。DeepID互联网布局类似卷积神经网络布局,倒数第壹层,有DeepID层,与卷积层4、最大池化层三相连,卷积神经网络层数越高视界域越大,既缅怀部分特征,又思虑全局特征。输入层
3壹x3九x一、卷积层一 2八x3六x20(卷积核4x四x1)、最大池化层1
1二x1八x20(过滤器二x2)、卷积层2 1二x1六x20(卷积核3x三x20)、最大池化层贰陆x捌x40(过滤器二x2)、卷积层三 四x六x60(卷积核叁x叁x40)、最大池化层2
二x三x60(过滤器二x二)、卷积层4 二x二x80(卷积核2x二x60)、DeepID层
1×160、全连接层 Softmax。《Deep Learning Face Representation from
Predicting 一千0 Classes》
http://mmlab.ie.cuhk.edu.hk/pdf/YiSun\_CVPR14.pdf

人脸验证。剖析两张人脸同壹个人或许大小。输入两张人脸,获得置信度分类、相应阈值,评估相似度。

人脸属性检查评定。人脸属性辩识、人脸心境剖析。https://www.betaface.com/wpa/
在线人脸识别测试。给出人年龄、是不是有胡子、心境(和颜悦色、经常、生气、愤怒)、性别、是还是不是带近视镜、肤色。

人脸识别应用,美图秀秀美颜应用、世纪佳缘查看地下配偶“面相”相似度,支付领域“刷脸支付”,安全防范领域“人脸鉴权”。Face++、商汤科学和技术,提供人脸识别SDK。

人脸检查评定。https://github.com/davidsandberg/facenet

Florian Schroff、Dmitry Kalenichenko、James Philbin论文《FaceNet: A
Unified Embedding for Face Recognition and Clustering》
https://arxiv.org/abs/1503.03832
https://github.com/davidsandberg/facenet/wiki/Validate-on-lfw

LFW(Labeled Faces in the Wild
Home)数据集。http://vis-www.cs.umass.edu/lfw/
。花旗国俄勒冈大学阿姆斯特分校Computer视觉实验室整理。13233张图片,57四十伍位。40玖陆个人唯有一张图纸,16八11个人多于一张。每张图片尺寸250×250。人脸图片在种种人物名字文件夹下。

数量预管理。校准代码
https://github.com/davidsandberg/facenet/blob/master/src/align/align\_dataset\_mtcnn.py

检查实验所用数据集校准为和预磨炼模型所用数据集大小同等。
设置景况变量

export PYTHONPATH=[…]/facenet/src

校准命令

for N in {1..4}; do python src/align/align_dataset_mtcnn.py
~/datasets/lfw/raw ~/datasets/lfw/lfw_mtcnnpy_160 –image_size 160
–margin 32 –random_order –gpu_memory_fraction 0.25 & done

预磨练模型2017021陆-09114玖.zip
https://drive.google.com/file/d/0B5MzpY9kBtDVZ2RpVDYwWmxoSUk
训练集 MS-Celeb-1M数据集
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
。微软人脸识别数据库,名家榜选用前拾0万球星,找寻引擎采撷每种名家拾0张人脸图片。预磨炼模型正确率0.9玖三+-0.00四。

检测。python src/validate_on_lfw.py datasets/lfw/lfw_mtcnnpy_160
models
条件比较,选拔facenet/data/pairs.txt,官方随机生成数据,相配和不相称人名和图纸编号。

10折交叉验证(10-fold cross
validation),精度测试方法。数据集分成十份,轮流将内部9份做磨炼集,一份做测试保,1五遍结果均值作算法精度估计。一般供给频仍拾折交叉验证求均值。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate

def main(args):
with tf.Graph().as_default():
with tf.Session() as sess:

# Read the file containing the pairs used for testing
# 1. 读入在此以前的pairs.txt文件
# 读入后如[[‘Abel_Pacheco’,’1′,’4′]]
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
# 获取文件路线和是还是不是相配关系对
paths, actual_issame =
lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs,
args.lfw_file_ext)
# Load the model
# 贰. 加载模型
facenet.load_model(args.model)

# Get input and output tensors
# 获取输入输出张量
images_placeholder =
tf.get_default_graph().get_tensor_by_name(“input:0”)
embeddings =
tf.get_default_graph().get_tensor_by_name(“embeddings:0”)
phase_train_placeholder =
tf.get_default_graph().get_tensor_by_name(“phase_train:0”)

#image_size = images_placeholder.get_shape()[1] # For some reason
this doesn’t work for frozen graphs
image_size = args.image_size
embedding_size = embeddings.get_shape()[1]

# Run forward pass to calculate embeddings
# 三. 使用前向传来验证
print(‘Runnning forward pass on LFW images’)
batch_size = args.lfw_batch_size
nrof_images = len(paths)
nrof_batches = int(math.ceil(1.0*nrof_images / batch_size)) #
总共批次数
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches):
start_index = i*batch_size
end_index = min((i+1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, image_size)
feed_dict = { images_placeholder:images,
phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings,
feed_dict=feed_dict)

# 四. 划算正确率、验证率,10折交叉验证方式
tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array,
actual_issame, nrof_folds=args.lfw_nrof_folds)
print(‘Accuracy: %1.3f+-%1.3f’ % (np.mean(accuracy),
np.std(accuracy)))
print(‘Validation rate: %2.5f+-%2.5f @ FAR=%2.5f’ % (val, val_std,
far))
# 得到auc值
auc = metrics.auc(fpr, tpr)
print(‘Area Under Curve (AUC): %1.3f’ % auc)
# 1获得错误率(eer)
eer = brentq(lambda x: 1. – x – interpolate.interp1d(fpr, tpr)(x), 0.,
1.)
print(‘Equal Error Rate (EER): %1.3f’ % eer)

def parse_arguments(argv):
parser = argparse.ArgumentParser()

parser.add_argument(‘lfw_dir’, type=str,
help=’Path to the data directory containing aligned LFW face
patches.’)
parser.add_argument(‘–lfw_batch_size’, type=int,
help=’Number of images to process in a batch in the LFW test set.’,
default=100)
parser.add_argument(‘model’, type=str,
help=’Could be either a directory containing the meta_file and
ckpt_file or a model protobuf (.pb) file’)
parser.add_argument(‘–image_size’, type=int,
help=’Image size (height, width) in pixels.’, default=160)
parser.add_argument(‘–lfw_pairs’, type=str,
help=’The file containing the pairs to use for validation.’,
default=’data/pairs.txt’)
parser.add_argument(‘–lfw_file_ext’, type=str,
help=’The file extension for the LFW dataset.’, default=’png’,
choices=[‘jpg’, ‘png’])
parser.add_argument(‘–lfw_nrof_folds’, type=int,
help=’Number of folds to use for cross validation. Mainly used for
testing.’, default=10)
return parser.parse_args(argv)
if __name__ == ‘__main__’:
main(parse_arguments(sys.argv[1:]))

性别、年龄识别。https://github.com/dpressel/rude-carnie

Adience
数据集。http://www.openu.ac.il/home/hassner/Adience/data.html\#agegender
。26580张图片,22八四类,年龄限制8个区段(0~2、4~6、8~13、15~20、25~32、38~43、48~53、60~),含有噪声、姿势、光照变化。aligned
# 经过剪裁对齐多少,faces #
原始数据。fold_0_data.txt至fold_4_data.txt
全体数据符号。fold_frontal_0_data.txt至fold_frontal_4_data.txt
仅用类似正面态度面部标志。数据结构 user_id
用户Flickr帐户ID、original_image 图片文件名、face_id
人标记符、age、gender、x、y、dx、dy 人脸边框、tilt_ang
切斜角度、fiducial_yaw_angle 基准偏移角度、fiducial_score
基准分数。https://www.flickr.com/

数量预管理。脚本把数据管理成TFRecords格式。https://github.com/dpressel/rude-carnie/blob/master/preproc.py
https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds文件夹,已经对训练集、测试集划分、标注。gender\_train.txt、gender\_val.txt
图片列表 Adience 数据集处理TFRecords文件。图片管理为大小25六x256JPEG编码LX570GB图像。tf.python_io.TFRecordWriter写入TFRecords文件,输出文件output_file。

创设立模型型。年龄、性别演习模型,Gil Levi、Tal Hassner诗歌《Age and Gender
Classification Using Convolutional Neural
Networks》http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.722.9654&rank=1
。模型 https://github.com/dpressel/rude-carnie/blob/master/model.py
。tenforflow.contrib.slim。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
import re
from tensorflow.contrib.layers import *
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import
inception_v3_base
TOWER_NAME = ‘tower’
def select_model(name):
if name.startswith(‘inception’):
print(‘selected (fine-tuning) inception model’)
return inception_v3
elif name == ‘bn’:
print(‘selected batch norm model’)
return levi_hassner_bn
print(‘selected default model’)
return levi_hassner
def get_checkpoint(checkpoint_path, requested_step=None,
basename=’checkpoint’):
if requested_step is not None:
model_checkpoint_path = ‘%s/%s-%s’ % (checkpoint_path, basename,
requested_step)
if os.path.exists(model_checkpoint_path) is None:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
print(model_checkpoint_path)
print(model_checkpoint_path)
return model_checkpoint_path, requested_step
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
# Restore checkpoint as described in top of this program
print(ckpt.model_checkpoint_path)
global_step =
ckpt.model_checkpoint_path.split(‘/’)[-1].split(‘-‘)[-1]
return ckpt.model_checkpoint_path, global_step
else:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
def _activation_summary(x):
tensor_name = re.sub(‘%s_[0-9]*/’ % TOWER_NAME, ”, x.op.name)
tf.summary.histogram(tensor_name + ‘/activations’, x)
tf.summary.scalar(tensor_name + ‘/sparsity’, tf.nn.zero_fraction(x))
def inception_v3(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.00004
stddev=0.1
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“InceptionV3”, “InceptionV3”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d, tf.contrib.slim.fully_connected],
weights_regularizer=weights_regularizer,
trainable=True):
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
net, end_points = inception_v3_base(images, scope=scope)
with tf.variable_scope(“logits”):
shape = net.get_shape()
net = avg_pool2d(net, shape[1:3], padding=”VALID”, scope=”pool”)
net = tf.nn.dropout(net, pkeep, name=’droplast’)
net = flatten(net, scope=”flatten”)

with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.truncated_normal([2048, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(net, weights), biases, name=scope.name)
_activation_summary(output)
return output
def levi_hassner_bn(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassnerBN”, “LeviHassnerBN”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01),
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
conv2 = convolution2d(pool1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
conv3 = convolution2d(pool2, 384, [3, 3], [1, 1], padding=’SAME’,
biases_initializer=tf.constant_initializer(0.), scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
# can use tf.contrib.layer.flatten
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output
def levi_hassner(nlabels, images, pkeep, is_training):
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassner”, “LeviHassner”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01)):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001,
beta=0.75, name=’norm1′)
conv2 = convolution2d(norm1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
norm2 = tf.nn.local_response_normalization(pool2, 5, alpha=0.0001,
beta=0.75, name=’norm2′)
conv3 = convolution2d(norm2, 384, [3, 3], [1, 1],
biases_initializer=tf.constant_initializer(0.), padding=’SAME’,
scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output

教练模型。https://github.com/dpressel/rude-carnie/blob/master/train.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
from model import select_model
import json
import re
LAMBDA = 0.01
MOM = 0.9
tf.app.flags.DEFINE_string(‘pre_checkpoint_path’, ”,
“””If specified, restore this pretrained model “””
“””before beginning any training.”””)
tf.app.flags.DEFINE_string(‘train_dir’,
‘/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0’,
‘Training directory’)
tf.app.flags.DEFINE_boolean(‘log_device_placement’, False,
“””Whether to log device placement.”””)
tf.app.flags.DEFINE_integer(‘num_preprocess_threads’, 4,
‘Number of preprocessing threads’)
tf.app.flags.DEFINE_string(‘optim’, ‘Momentum’,
‘Optimizer’)
tf.app.flags.DEFINE_integer(‘image_size’, 227,
‘Image size’)
tf.app.flags.DEFINE_float(‘eta’, 0.01,
‘Learning rate’)
tf.app.flags.DEFINE_float(‘pdrop’, 0.,
‘Dropout probability’)
tf.app.flags.DEFINE_integer(‘max_steps’, 40000,
‘Number of iterations’)
tf.app.flags.DEFINE_integer(‘steps_per_decay’, 10000,
‘Number of steps before learning rate decay’)
tf.app.flags.DEFINE_float(‘eta_decay_rate’, 0.1,
‘Learning rate decay’)
tf.app.flags.DEFINE_integer(‘epochs’, -1,
‘Number of epochs’)
tf.app.flags.DEFINE_integer(‘batch_size’, 128,
‘Batch size’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint name’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘pre_model’,
”,#’./inception_v3.ckpt’,
‘checkpoint file’)
FLAGS = tf.app.flags.FLAGS
# Every 5k steps cut learning rate in half
def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
print(‘decay [%f] every [%d] steps’ % (decay_rate, at_step))
def _decay(lr, global_step):
return tf.train.exponential_decay(lr, global_step,
at_step, decay_rate, staircase=True)
return _decay
def optimizer(optim, eta, loss_fn, at_step, decay_rate):
global_step = tf.Variable(0, trainable=False)
optz = optim
if optim == ‘Adadelta’:
optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
lr_decay_fn = None
elif optim == ‘Momentum’:
optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta,
optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
def loss(logits, labels):
labels = tf.cast(labels, tf.int32)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name=’cross_entropy_per_example’)
cross_entropy_mean = tf.reduce_mean(cross_entropy,
name=’cross_entropy’)
tf.add_to_collection(‘losses’, cross_entropy_mean)
losses = tf.get_collection(‘losses’)
regularization_losses =
tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = cross_entropy_mean + LAMBDA *
sum(regularization_losses)
tf.summary.scalar(‘tl (raw)’, total_loss)
#total_loss = tf.add_n(losses + regularization_losses,
name=’total_loss’)
loss_averages = tf.train.ExponentialMovingAverage(0.9, name=’avg’)
loss_averages_op = loss_averages.apply(losses + [total_loss])
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name + ‘ (raw)’, l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
with tf.control_dependencies([loss_averages_op]):
total_loss = tf.identity(total_loss)
return total_loss
def main(argv=None):
with tf.Graph().as_default():
model_fn = select_model(FLAGS.model_type)
# Open the metadata file and figure out nlabels, and size of epoch
#
展开元数据文件md.json,那几个文件是在预处理数量时生成。寻觅nlabels、epoch大小
input_file = os.path.join(FLAGS.train_dir, ‘md.json’)
print(input_file)
with open(input_file, ‘r’) as f:
md = json.load(f)
images, labels, _ = distorted_inputs(FLAGS.train_dir,
FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
logits = model_fn(md[‘nlabels’], images, 1-FLAGS.pdrop, True)
total_loss = loss(logits, labels)
train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss,
FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
saver = tf.train.Saver(tf.global_variables())
summary_op = tf.summary.merge_all()
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement))
tf.global_variables_initializer().run(session=sess)
# This is total hackland, it only works to fine-tune iv3
# 本例能够输入预训练模型英斯ption V叁,可用来微调 英斯ption V三
if FLAGS.pre_model:
inception_variables = tf.get_collection(
tf.GraphKeys.VARIABLES, scope=”InceptionV3″)
restorer = tf.train.Saver(inception_variables)
restorer.restore(sess, FLAGS.pre_model)
if FLAGS.pre_checkpoint_path:
if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
print(‘Trying to restore checkpoint from %s’ %
FLAGS.pre_checkpoint_path)
restorer = tf.train.Saver()
tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
print(‘%s: Pre-trained model restored from %s’ %
(datetime.now(), FLAGS.pre_checkpoint_path))
# 将ckpt文件存款和储蓄在run-(pid)目录
run_dir = ‘%s/run-%d’ % (FLAGS.train_dir, os.getpid())
checkpoint_path = ‘%s/%s’ % (run_dir, FLAGS.checkpoint)
if tf.gfile.Exists(run_dir) is False:
print(‘Creating %s’ % run_dir)
tf.gfile.MakeDirs(run_dir)
tf.train.write_graph(sess.graph_def, run_dir, ‘model.pb’,
as_text=True)
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
steps_per_train_epoch = int(md[‘train_counts’] /
FLAGS.batch_size)
num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs
* steps_per_train_epoch
print(‘Requested number of steps [%d]’ % num_steps)

for step in xrange(num_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, total_loss])
duration = time.time() – start_time
assert not np.isnan(loss_value), ‘Model diverged with loss = NaN’
# 每拾步记录一次摘要文件,保存3个检查点文件
if step % 10 == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)

format_str = (‘%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ‘
‘sec/batch)’)
print(format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
# Loss only actually evaluated every 100 steps?
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)

if step % 1000 == 0 or (step + 1) == num_steps:
saver.save(sess, checkpoint_path, global_step=step)
if __name__ == ‘__main__’:
tf.app.run()

注内衣模特型。https://github.com/dpressel/rude-carnie/blob/master/guess.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
from data import inputs
import numpy as np
import tensorflow as tf
from model import select_model, get_checkpoint
from utils import *
import os
import json
import csv
RESIZE_FINAL = 227
GENDER_LIST =[‘M’,’F’]
AGE_LIST = [‘(0, 2)’,'(4, 6)’,'(8, 12)’,'(15, 20)’,'(25, 32)’,'(38,
43)’,'(48, 53)’,'(60, 100)’]
MAX_BATCH_SZ = 128
tf.app.flags.DEFINE_string(‘model_dir’, ”,
‘Model directory (where training data lives)’)
tf.app.flags.DEFINE_string(‘class_type’, ‘age’,
‘Classification type (age|gender)’)
tf.app.flags.DEFINE_string(‘device_id’, ‘/cpu:0’,
‘What processing unit to execute inference on’)
tf.app.flags.DEFINE_string(‘filename’, ”,
‘File (Image) or File list (Text/No header TSV) to process’)
tf.app.flags.DEFINE_string(‘target’, ”,
‘CSV file containing the filename processed along with best guess and
score’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint basename’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘requested_step’, ”, ‘Within the model
directory, a requested step to restore e.g., 9000’)
tf.app.flags.DEFINE_boolean(‘single_look’, False, ‘single look at the
image or multiple crops’)
tf.app.flags.DEFINE_string(‘face_detection_model’, ”, ‘Do frontal
face detection with model specified’)
tf.app.flags.DEFINE_string(‘face_detection_type’, ‘cascade’, ‘Face
detection model type (yolo_tiny|cascade)’)
FLAGS = tf.app.flags.FLAGS
def one_of(fname, types):
return any([fname.endswith(‘.’ + ty) for ty in types])
def resolve_file(fname):
if os.path.exists(fname): return fname
for suffix in (‘.jpg’, ‘.png’, ‘.JPG’, ‘.PNG’, ‘.jpeg’):
cand = fname + suffix
if os.path.exists(cand):
return cand
return None
def classify_many_single_crop(sess, label_list, softmax_output,
coder, images, image_files, writer):
try:
num_batches = math.ceil(len(image_files) / MAX_BATCH_SZ)
pg = ProgressBar(num_batches)
for j in range(num_batches):
start_offset = j * MAX_BATCH_SZ
end_offset = min((j + 1) * MAX_BATCH_SZ, len(image_files))

batch_image_files = image_files[start_offset:end_offset]
print(start_offset, end_offset, len(batch_image_files))
image_batch = make_multi_image_batch(batch_image_files, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
batch_sz = batch_results.shape[0]
for i in range(batch_sz):
output_i = batch_results[i]
best_i = np.argmax(output_i)
best_choice = (label_list[best_i], output_i[best_i])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)
if writer is not None:
f = batch_image_files[i]
writer.writerow((f, best_choice[0], ‘%.2f’ % best_choice[1]))
pg.update()
pg.done()
except Exception as e:
print(e)
print(‘Failed to run all images’)
def classify_one_multi_crop(sess, label_list, softmax_output,
coder, images, image_file, writer):
try:
print(‘Running file %s’ % image_file)
image_batch = make_multi_crop_batch(image_file, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
output = batch_results[0]
batch_sz = batch_results.shape[0]

for i in range(1, batch_sz):
output = output + batch_results[i]

output /= batch_sz
best = np.argmax(output) # 最恐怕质量分类
best_choice = (label_list[best], output[best])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)

nlabels = len(label_list)
if nlabels > 2:
output[best] = 0
second_best = np.argmax(output)
print(‘Guess @ 2 %s, prob = %.2f’ % (label_list[second_best],
output[second_best]))
if writer is not None:
writer.writerow((image_file, best_choice[0], ‘%.2f’ %
best_choice[1]))
except Exception as e:
print(e)
print(‘Failed to run image %s ‘ % image_file)
def list_images(srcfile):
with open(srcfile, ‘r’) as csvfile:
delim = ‘,’ if srcfile.endswith(‘.csv’) else ‘\t’
reader = csv.reader(csvfile, delimiter=delim)
if srcfile.endswith(‘.csv’) or srcfile.endswith(‘.tsv’):
print(‘skipping header’)
_ = next(reader)

return [row[0] for row in reader]
def main(argv=None): # pylint: disable=unused-argument
files = []

if FLAGS.face_detection_model:
print(‘Using face detector (%s) %s’ % (FLAGS.face_detection_type,
FLAGS.face_detection_model))
face_detect = face_detection_model(FLAGS.face_detection_type,
FLAGS.face_detection_model)
face_files, rectangles = face_detect.run(FLAGS.filename)
print(face_files)
files += face_files
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
label_list = AGE_LIST if FLAGS.class_type == ‘age’ else
GENDER_LIST
nlabels = len(label_list)
print(‘Executing on %s’ % FLAGS.device_id)
model_fn = select_model(FLAGS.model_type)
with tf.device(FLAGS.device_id):

images = tf.placeholder(tf.float32, [None, RESIZE_FINAL,
RESIZE_FINAL, 3])
logits = model_fn(nlabels, images, 1, False)
init = tf.global_variables_initializer()

requested_step = FLAGS.requested_step if FLAGS.requested_step else
None

checkpoint_path = ‘%s’ % (FLAGS.model_dir)
model_checkpoint_path, global_step =
get_checkpoint(checkpoint_path, requested_step, FLAGS.checkpoint)

saver = tf.train.Saver()
saver.restore(sess, model_checkpoint_path)

softmax_output = tf.nn.softmax(logits)
coder = ImageCoder()
# Support a batch mode if no face detection model
if len(files) == 0:
if (os.path.isdir(FLAGS.filename)):
for relpath in os.listdir(FLAGS.filename):
abspath = os.path.join(FLAGS.filename, relpath)

if os.path.isfile(abspath) and any([abspath.endswith(‘.’ + ty) for ty
in (‘jpg’, ‘png’, ‘JPG’, ‘PNG’, ‘jpeg’)]):
print(abspath)
files.append(abspath)
else:
files.append(FLAGS.filename)
# If it happens to be a list file, read the list and clobber the
files
if any([FLAGS.filename.endswith(‘.’ + ty) for ty in (‘csv’, ‘tsv’,
‘txt’)]):
files = list_images(FLAGS.filename)

writer = None
output = None
if FLAGS.target:
print(‘Creating output file %s’ % FLAGS.target)
output = open(FLAGS.target, ‘w’)
writer = csv.writer(output)
writer.writerow((‘file’, ‘label’, ‘score’))
image_files = list(filter(lambda x: x is not None, [resolve_file(f)
for f in files]))
print(image_files)
if FLAGS.single_look:
classify_many_single_crop(sess, label_list, softmax_output, coder,
images, image_files, writer)
else:
for image_file in image_files:
classify_one_multi_crop(sess, label_list, softmax_output, coder,
images, image_file, writer)
if output is not None:
output.close()

if __name__ == ‘__main__’:
tf.app.run()

微软脸部图片识别性别、年龄网址 http://how-old.net/
。图片识别年龄、性别。依据难点查找图片。

参照他事他说加以考查资料:
《TensorFlow手艺分析与实战》

迎接推荐法国巴黎机械学习专门的学业机遇,笔者的微信:qingxingfengzi

http://www.bkjia.com/Pythonjc/1231904.htmlwww.bkjia.comtruehttp://www.bkjia.com/Pythonjc/1231904.htmlTechArticle学习笔记TF058:人脸识别,学习笔记tf058人脸
人脸识别,基于人脸部特征消息识别身份的海洋生物识别能力。录像机、摄像头收罗人脸图像或摄像…

人脸识别优势,非强制性(采撷格局不便于被开采,被识旁人脸图像可积极获取)、非接触性(用户无需与设备接触)、并发性(可同有的时候候三个人脸检查实验、追踪、识别)。深度学习前,人脸识别双手续:高维人工特征提取、降维。守旧人脸识别手艺基于可知光图像。深度学习+大数据(海量有标记人脸数据)为人脸识别领域主流技艺门路。神经网络人脸识别技能,大批量样书图像练习识别模型,无需人工选拔特征,样本练习进程自行学习,识别正确率能够完结9玖%。

人脸识别技艺流程。

人脸图像搜集、检查实验。人脸图像收罗,录像头把人脸图像搜集下来,静态图像、动态图像、不相同岗位、不一样表情。用户在采访设备拍报范围内,搜聚设置自动寻找并版画。人脸检查测试属于指标质量评定(object
detection)。对要检查测试对象对象可能率计算,获得待检查评定对象特征,创建目的检验模型。用模子匹配输入图像,输出相配区域。人脸质量评定是人脸识别预管理,正确标定人脸在图像的地点大小。人脸图像方式特点丰硕,直方图特征、颜色特征、模板特征、结构特征、哈尔特征(Haar-like
feature)。人脸检查实验挑出有用音讯,用特色检查评定脸部。人脸检查测试算法,模板相配模型、Adaboost模型,艾达boost模型速度。精度综合质量最棒,练习慢、检查评定快,可高达摄像流实时检查实验效果。

人脸图像预管理。基于人脸检查实验结果,管理图像,服务特征提取。系统获得人脸图像遭到各类规格限制、随机搅扰,需缩放、旋转、拉伸、光线补偿、灰度调换、直方图均衡化、标准化、几何改良、过滤、锐化等图像预管理。

人脸图像特征提取。人脸图像新闻数字化,人脸图像调换为1串数字(特征向量)。如,眼睛右边、嘴唇右侧、鼻子、下巴地点,特征点间欧氏距离、曲率、角度提抽出特色分量,相关特征连接成长特征向量。

人脸图像相配、识别。提取人脸图像特点数据与数据仓库储存款和储蓄人脸特征模板搜索相称,根据相似程度对身份新闻进行决断,设定阈值,相似度超过阈值,输出相配结果。确认,壹对一(1:壹)图像相比,注明“你就是你”,金融核查身份、音讯安举世。辨认,一对多(一:N)图像相称,“N人中找你”,摄像流,人走进识别范围就成功辨认,安全堤防领域。

人脸识别分类。

人脸检查实验。检查评定、定位图片人脸,重临高业饿啊人脸框坐标。对人脸剖析、管理的率先步。“滑动窗口”,选用图像矩形区域作滑动窗口,窗口中领取特征对图像区域描述,依照特征描述推断窗口是不是人脸。不断遍历需求侦察窗口。

人脸关键点检查评定。定位、重回人脸五官、轮廓关键点坐标地点。人脸概略、眼睛、眉毛、嘴唇、鼻子概略。Face++提供高达拾陆点关键点。人脸关键点定位本领,级联形回归(cascaded
shape regression,
CS大切诺基)。人脸识别,基于DeepID网络布局。DeepID互联网布局类似卷积神经网络布局,倒数第一层,有DeepID层,与卷积层4、最大池化层三相连,卷积神经网络层数越高视界域越大,既考虑部分特征,又思虑全局特征。输入层
3一x3玖x壹、卷积层1 2捌x3陆x20(卷积核4x四x1)、最大池化层1
1二x1八x20(过滤器二x贰)、卷积层二 1二x16x20(卷积核三x叁x20)、最大池化层2陆x八x40(过滤器2x贰)、卷积层三 四x陆x60(卷积核三x三x40)、最大池化层2
二x三x60(过滤器二x二)、卷积层肆 二x2x80(卷积核二x二x60)、DeepID层
一x160、全连接层 Softmax。《Deep Learning Face Representation from
Predicting 一千0 Classes》
http://mmlab.ie.cuhk.edu.hk/pdf/YiSun\_CVPR14.pdf

人脸验证。剖析两张人脸同一个人大概大小。输入两张人脸,获得置信度分类、相应阈值,评估相似度。

人脸属性检查测试。人脸属性辩识、人脸心理剖析。https://www.betaface.com/wpa/
在线人脸识别测试。给出人年龄、是不是有胡子、心理(开心、符合规律、生气、愤怒)、性别、是不是带老花镜、肤色。

人脸识别应用,美图秀秀美颜应用、世纪佳缘查看地下配偶“面相”相似度,支付领域“刷脸支付”,安全防止领域“人脸鉴权”。Face++、商汤科学和技术,提供人脸识别SDK。

人脸质量评定。https://github.com/davidsandberg/facenet

Florian Schroff、Dmitry Kalenichenko、James Philbin论文《FaceNet: A
Unified Embedding for Face Recognition and Clustering》
https://arxiv.org/abs/1503.03832
https://github.com/davidsandberg/facenet/wiki/Validate-on-lfw

LFW(Labeled Faces in the Wild
Home)数据集。http://vis-www.cs.umass.edu/lfw/
。U.S.密西西比大学阿姆斯特分校Computer视觉实验室整理。1323三张图片,57415人。40玖柒个人唯有一张图纸,1680位多于一张。每张图片尺寸250×250。人脸图片在各类人物名字文件夹下。

数量预管理。校准代码
https://github.com/davidsandberg/facenet/blob/master/src/align/align\_dataset\_mtcnn.py

检测所用数据集校准为和预磨练模型所用数据集大小同样。
设置景况变量

export PYTHONPATH=[…]/facenet/src

校准命令

for N in {1..4}; do python src/align/align_dataset_mtcnn.py
~/datasets/lfw/raw ~/datasets/lfw/lfw_mtcnnpy_160 –image_size 160
–margin 32 –random_order –gpu_memory_fraction 0.25 & done

预磨炼模型2017021陆-09114九.zip
https://drive.google.com/file/d/0B5MzpY9kBtDVZ2RpVDYwWmxoSUk
训练集 MS-Celeb-1M数据集
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
。微软人脸识别数据库,有名的人榜选拔前拾0万政要,寻觅引擎采撷各样有名气的人100张人脸图片。预训练模型正确率0.9九三+-0.004。

检测。python src/validate_on_lfw.py datasets/lfw/lfw_mtcnnpy_160
models
条件比较,选用facenet/data/pairs.txt,官方随机生成数据,匹配和不匹配人名和图纸编号。

10折交叉验证(10-fold cross
validation),精度测试方法。数据集分成拾份,轮流将内部9份做磨炼集,①份做测试保,十遍结果均值作算法精度估计。一般要求频仍拾折交叉验证求均值。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate

def main(args):
with tf.Graph().as_default():
with tf.Session() as sess:

# Read the file containing the pairs used for testing
# 1. 读入此前的pairs.txt文件
# 读入后如[[‘Abel_Pacheco’,’1′,’4′]]
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
# 获取文件路径和是不是匹配关系对
paths, actual_issame =
lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs,
args.lfw_file_ext)
# Load the model
# 二. 加载模型
facenet.load_model(args.model)

# Get input and output tensors
# 获取输入输出张量
images_placeholder =
tf.get_default_graph().get_tensor_by_name(“input:0”)
embeddings =
tf.get_default_graph().get_tensor_by_name(“embeddings:0”)
phase_train_placeholder =
tf.get_default_graph().get_tensor_by_name(“phase_train:0”)

#image_size = images_placeholder.get_shape()[1] # For some reason
this doesn’t work for frozen graphs
image_size = args.image_size
embedding_size = embeddings.get_shape()[1]

# Run forward pass to calculate embeddings
# 三. 使用前向传来验证
print(‘Runnning forward pass on LFW images’)
batch_size = args.lfw_batch_size
nrof_images = len(paths)
nrof_batches = int(math.ceil(1.0*nrof_images / batch_size)) #
总共批次数
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches):
start_index = i*batch_size
end_index = min((i+1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, image_size)
feed_dict = { images_placeholder:images,
phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings,
feed_dict=feed_dict)

# 四. 计量正确率、验证率,10折交叉验证措施
tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array,
actual_issame, nrof_folds=args.lfw_nrof_folds)
print(‘Accuracy: %1.3f+-%1.3f’ % (np.mean(accuracy),
np.std(accuracy)))
print(‘Validation rate: %2.5f+-%2.5f @ FAR=%2.5f’ % (val, val_std,
far))
# 得到auc值
auc = metrics.auc(fpr, tpr)
print(‘Area Under Curve (AUC): %1.3f’ % auc)
# 一得到错误率(eer)
eer = brentq(lambda x: 1. – x – interpolate.interp1d(fpr, tpr)(x), 0.,
1.)
print(‘Equal Error Rate (EER): %1.3f’ % eer)

def parse_arguments(argv):
parser = argparse.ArgumentParser()

parser.add_argument(‘lfw_dir’, type=str,
help=’Path to the data directory containing aligned LFW face
patches.’)
parser.add_argument(‘–lfw_batch_size’, type=int,
help=’Number of images to process in a batch in the LFW test set.’,
default=100)
parser.add_argument(‘model’, type=str,
help=’Could be either a directory containing the meta_file and
ckpt_file or a model protobuf (.pb) file’)
parser.add_argument(‘–image_size’, type=int,
help=’Image size (height, width) in pixels.’, default=160)
parser.add_argument(‘–lfw_pairs’, type=str,
help=’The file containing the pairs to use for validation.’,
default=’data/pairs.txt’)
parser.add_argument(‘–lfw_file_ext’, type=str,
help=’The file extension for the LFW dataset.’, default=’png’,
choices=[‘jpg’, ‘png’])
parser.add_argument(‘–lfw_nrof_folds’, type=int,
help=’Number of folds to use for cross validation. Mainly used for
testing.’, default=10)
return parser.parse_args(argv)
if __name__ == ‘__main__’:
main(parse_arguments(sys.argv[1:]))

性别、年龄识别。https://github.com/dpressel/rude-carnie

Adience
数据集。http://www.openu.ac.il/home/hassner/Adience/data.html\#agegender
。26580张图片,22捌四类,年龄限制九个区段(0~2、4~6、8~13、15~20、25~32、38~43、48~53、60~),含有噪声、姿势、光照变化。aligned
# 经过剪裁对齐多少,faces #
原始数据。fold_0_data.txt至fold_4_data.txt
全体数目符号。fold_frontal_0_data.txt至fold_frontal_4_data.txt
仅用类似正面态度面部标记。数据结构 user_id
用户Flickr帐户ID、original_image 图片文件名、face_id
人标记符、age、gender、x、y、dx、dy 人脸边框、tilt_ang
切斜角度、fiducial_yaw_angle 基准偏移角度、fiducial_score
基准分数。https://www.flickr.com/

数量预管理。脚本把多少处理成TFRecords格式。https://github.com/dpressel/rude-carnie/blob/master/preproc.py
https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds文件夹,已经对训练集、测试集划分、标注。gender\_train.txt、gender\_val.txt
图片列表 Adience 数据集管理TFRecords文件。图片处理为大小25六x25陆JPEG编码EnclaveGB图像。tf.python_io.TFRecordWriter写入TFRecords文件,输出文件output_file。

创设立模型型。年龄、性别陶冶模型,Gil Levi、Tal Hassner随想《Age and Gender
Classification Using Convolutional Neural
Networks》http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.722.9654&rank=1
。模型 https://github.com/dpressel/rude-carnie/blob/master/model.py
。tenforflow.contrib.slim。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
import re
from tensorflow.contrib.layers import *
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import
inception_v3_base
TOWER_NAME = ‘tower’
def select_model(name):
if name.startswith(‘inception’):
print(‘selected (fine-tuning) inception model’)
return inception_v3
elif name == ‘bn’:
print(‘selected batch norm model’)
return levi_hassner_bn
print(‘selected default model’)
return levi_hassner
def get_checkpoint(checkpoint_path, requested_step=None,
basename=’checkpoint’):
if requested_step is not None:
model_checkpoint_path = ‘%s/%s-%s’ % (checkpoint_path, basename,
requested_step)
if os.path.exists(model_checkpoint_path) is None:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
print(model_checkpoint_path)
print(model_checkpoint_path)
return model_checkpoint_path, requested_step
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
# Restore checkpoint as described in top of this program
print(ckpt.model_checkpoint_path)
global_step =
ckpt.model_checkpoint_path.split(‘/’)[-1].split(‘-‘)[-1]
return ckpt.model_checkpoint_path, global_step
else:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
def _activation_summary(x):
tensor_name = re.sub(‘%s_[0-9]*/’ % TOWER_NAME, ”, x.op.name)
tf.summary.histogram(tensor_name + ‘/activations’, x)
tf.summary.scalar(tensor_name + ‘/sparsity’, tf.nn.zero_fraction(x))
def inception_v3(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.00004
stddev=0.1
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“InceptionV3”, “InceptionV3”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d, tf.contrib.slim.fully_connected],
weights_regularizer=weights_regularizer,
trainable=True):
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
net, end_points = inception_v3_base(images, scope=scope)
with tf.variable_scope(“logits”):
shape = net.get_shape()
net = avg_pool2d(net, shape[1:3], padding=”VALID”, scope=”pool”)
net = tf.nn.dropout(net, pkeep, name=’droplast’)
net = flatten(net, scope=”flatten”)

with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.truncated_normal([2048, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(net, weights), biases, name=scope.name)
_activation_summary(output)
return output
def levi_hassner_bn(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassnerBN”, “LeviHassnerBN”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01),
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
conv2 = convolution2d(pool1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
conv3 = convolution2d(pool2, 384, [3, 3], [1, 1], padding=’SAME’,
biases_initializer=tf.constant_initializer(0.), scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
# can use tf.contrib.layer.flatten
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output
def levi_hassner(nlabels, images, pkeep, is_training):
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassner”, “LeviHassner”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01)):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001,
beta=0.75, name=’norm1′)
conv2 = convolution2d(norm1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
norm2 = tf.nn.local_response_normalization(pool2, 5, alpha=0.0001,
beta=0.75, name=’norm2′)
conv3 = convolution2d(norm2, 384, [3, 3], [1, 1],
biases_initializer=tf.constant_initializer(0.), padding=’SAME’,
scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output

教练模型。https://github.com/dpressel/rude-carnie/blob/master/train.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
from model import select_model
import json
import re
LAMBDA = 0.01
MOM = 0.9
tf.app.flags.DEFINE_string(‘pre_checkpoint_path’, ”,
“””If specified, restore this pretrained model “””
“””before beginning any training.”””)
tf.app.flags.DEFINE_string(‘train_dir’,
‘/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0’,
‘Training directory’)
tf.app.flags.DEFINE_boolean(‘log_device_placement’, False,
“””Whether to log device placement.”””)
tf.app.flags.DEFINE_integer(‘num_preprocess_threads’, 4,
‘Number of preprocessing threads’)
tf.app.flags.DEFINE_string(‘optim’, ‘Momentum’,
‘Optimizer’)
tf.app.flags.DEFINE_integer(‘image_size’, 227,
‘Image size’)
tf.app.flags.DEFINE_float(‘eta’, 0.01,
‘Learning rate’)
tf.app.flags.DEFINE_float(‘pdrop’, 0.,
‘Dropout probability’)
tf.app.flags.DEFINE_integer(‘max_steps’, 40000,
‘Number of iterations’)
tf.app.flags.DEFINE_integer(‘steps_per_decay’, 10000,
‘Number of steps before learning rate decay’)
tf.app.flags.DEFINE_float(‘eta_decay_rate’, 0.1,
‘Learning rate decay’)
tf.app.flags.DEFINE_integer(‘epochs’, -1,
‘Number of epochs’)
tf.app.flags.DEFINE_integer(‘batch_size’, 128,
‘Batch size’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint name’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘pre_model’,
”,#’./inception_v3.ckpt’,
‘checkpoint file’)
FLAGS = tf.app.flags.FLAGS
# Every 5k steps cut learning rate in half
def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
print(‘decay [%f] every [%d] steps’ % (decay_rate, at_step))
def _decay(lr, global_step):
return tf.train.exponential_decay(lr, global_step,
at_step, decay_rate, staircase=True)
return _decay
def optimizer(optim, eta, loss_fn, at_step, decay_rate):
global_step = tf.Variable(0, trainable=False)
optz = optim
if optim == ‘Adadelta’:
optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
lr_decay_fn = None
elif optim == ‘Momentum’:
optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta,
optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
def loss(logits, labels):
labels = tf.cast(labels, tf.int32)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name=’cross_entropy_per_example’)
cross_entropy_mean = tf.reduce_mean(cross_entropy,
name=’cross_entropy’)
tf.add_to_collection(‘losses’, cross_entropy_mean)
losses = tf.get_collection(‘losses’)
regularization_losses =
tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = cross_entropy_mean + LAMBDA *
sum(regularization_losses)
tf.summary.scalar(‘tl (raw)’, total_loss)
#total_loss = tf.add_n(losses + regularization_losses,
name=’total_loss’)
loss_averages = tf.train.ExponentialMovingAverage(0.9, name=’avg’)
loss_averages_op = loss_averages.apply(losses + [total_loss])
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name + ‘ (raw)’, l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
with tf.control_dependencies([loss_averages_op]):
total_loss = tf.identity(total_loss)
return total_loss
def main(argv=None):
with tf.Graph().as_default():
model_fn = select_model(FLAGS.model_type)
# Open the metadata file and figure out nlabels, and size of epoch
#
展开元数据文件md.json,这几个文件是在预管理数据时生成。搜索nlabels、epoch大小
input_file = os.path.join(FLAGS.train_dir, ‘md.json’)
print(input_file)
with open(input_file, ‘r’) as f:
md = json.load(f)
images, labels, _ = distorted_inputs(FLAGS.train_dir,
FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
logits = model_fn(md[‘nlabels’], images, 1-FLAGS.pdrop, True)
total_loss = loss(logits, labels)
train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss,
FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
saver = tf.train.Saver(tf.global_variables())
summary_op = tf.summary.merge_all()
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement))
tf.global_variables_initializer().run(session=sess)
# This is total hackland, it only works to fine-tune iv3
# 本例能够输入预演练模型英斯ption V3,可用来微调 英斯ption V3
if FLAGS.pre_model:
inception_variables = tf.get_collection(
tf.GraphKeys.VARIABLES, scope=”InceptionV3″)
restorer = tf.train.Saver(inception_variables)
restorer.restore(sess, FLAGS.pre_model)
if FLAGS.pre_checkpoint_path:
if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
print(‘Trying to restore checkpoint from %s’ %
FLAGS.pre_checkpoint_path)
restorer = tf.train.Saver()
tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
print(‘%s: Pre-trained model restored from %s’ %
(datetime.now(), FLAGS.pre_checkpoint_path))
# 将ckpt文件存款和储蓄在run-(pid)目录
run_dir = ‘%s/run-%d’ % (FLAGS.train_dir, os.getpid())
checkpoint_path = ‘%s/%s’ % (run_dir, FLAGS.checkpoint)
if tf.gfile.Exists(run_dir) is False:
print(‘Creating %s’ % run_dir)
tf.gfile.MakeDirs(run_dir)
tf.train.write_graph(sess.graph_def, run_dir, ‘model.pb’,
as_text=True)
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
steps_per_train_epoch = int(md[‘train_counts’] /
FLAGS.batch_size)
num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs
* steps_per_train_epoch
print(‘Requested number of steps [%d]’ % num_steps)

for step in xrange(num_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, total_loss])
duration = time.time() – start_time
assert not np.isnan(loss_value), ‘Model diverged with loss = NaN’
# 每10步记录一次摘要文件,保存二个检查点文件
if step % 10 == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)

format_str = (‘%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ‘
‘sec/batch)’)
print(format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
# Loss only actually evaluated every 100 steps?
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)

if step % 1000 == 0 or (step + 1) == num_steps:
saver.save(sess, checkpoint_path, global_step=step)
if __name__ == ‘__main__’:
tf.app.run()

申明模型。https://github.com/dpressel/rude-carnie/blob/master/guess.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
from data import inputs
import numpy as np
import tensorflow as tf
from model import select_model, get_checkpoint
from utils import *
import os
import json
import csv
RESIZE_FINAL = 227
GENDER_LIST =[‘M’,’F’]
AGE_LIST = [‘(0, 2)’,'(4, 6)’,'(8, 12)’,'(15, 20)’,'(25, 32)’,'(38,
43)’,'(48, 53)’,'(60, 100)’]
MAX_BATCH_SZ = 128
tf.app.flags.DEFINE_string(‘model_dir’, ”,
‘Model directory (where training data lives)’)
tf.app.flags.DEFINE_string(‘class_type’, ‘age’,
‘Classification type (age|gender)’)
tf.app.flags.DEFINE_string(‘device_id’, ‘/cpu:0’,
‘What processing unit to execute inference on’)
tf.app.flags.DEFINE_string(‘filename’, ”,
‘File (Image) or File list (Text/No header TSV) to process’)
tf.app.flags.DEFINE_string(‘target’, ”,
‘CSV file containing the filename processed along with best guess and
score’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint basename’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘requested_step’, ”, ‘Within the model
directory, a requested step to restore e.g., 9000’)
tf.app.flags.DEFINE_boolean(‘single_look’, False, ‘single look at the
image or multiple crops’)
tf.app.flags.DEFINE_string(‘face_detection_model’, ”, ‘Do frontal
face detection with model specified’)
tf.app.flags.DEFINE_string(‘face_detection_type’, ‘cascade’, ‘Face
detection model type (yolo_tiny|cascade)’)
FLAGS = tf.app.flags.FLAGS
def one_of(fname, types):
return any([fname.endswith(‘.’ + ty) for ty in types])
def resolve_file(fname):
if os.path.exists(fname): return fname
for suffix in (‘.jpg’, ‘.png’, ‘.JPG’, ‘.PNG’, ‘.jpeg’):
cand = fname + suffix
if os.path.exists(cand):
return cand
return None
def classify_many_single_crop(sess, label_list, softmax_output,
coder, images, image_files, writer):
try:
num_batches = math.ceil(len(image_files) / MAX_BATCH_SZ)
pg = ProgressBar(num_batches)
for j in range(num_batches):
start_offset = j * MAX_BATCH_SZ
end_offset = min((j + 1) * MAX_BATCH_SZ, len(image_files))

batch_image_files = image_files[start_offset:end_offset]
print(start_offset, end_offset, len(batch_image_files))
image_batch = make_multi_image_batch(batch_image_files, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
batch_sz = batch_results.shape[0]
for i in range(batch_sz):
output_i = batch_results[i]
best_i = np.argmax(output_i)
best_choice = (label_list[best_i], output_i[best_i])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)
if writer is not None:
f = batch_image_files[i]
writer.writerow((f, best_choice[0], ‘%.2f’ % best_choice[1]))
pg.update()
pg.done()
except Exception as e:
print(e)
print(‘Failed to run all images’)
def classify_one_multi_crop(sess, label_list, softmax_output,
coder, images, image_file, writer):
try:
print(‘Running file %s’ % image_file)
image_batch = make_multi_crop_batch(image_file, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
output = batch_results[0]
batch_sz = batch_results.shape[0]

for i in range(1, batch_sz):
output = output + batch_results[i]

output /= batch_sz
best = np.argmax(output) # 最或许品质分类
best_choice = (label_list[best], output[best])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)

nlabels = len(label_list)
if nlabels > 2:
output[best] = 0
second_best = np.argmax(output)
print(‘Guess @ 2 %s, prob = %.2f’ % (label_list[second_best],
output[second_best]))
if writer is not None:
writer.writerow((image_file, best_choice[0], ‘%.2f’ %
best_choice[1]))
except Exception as e:
print(e)
print(‘Failed to run image %s ‘ % image_file)
def list_images(srcfile):
with open(srcfile, ‘r’) as csvfile:
delim = ‘,’ if srcfile.endswith(‘.csv’) else ‘\t’
reader = csv.reader(csvfile, delimiter=delim)
if srcfile.endswith(‘.csv’) or srcfile.endswith(‘.tsv’):
print(‘skipping header’)
_ = next(reader)

return [row[0] for row in reader]
def main(argv=None): # pylint: disable=unused-argument
files = []

if FLAGS.face_detection_model:
print(‘Using face detector (%s) %s’ % (FLAGS.face_detection_type,
FLAGS.face_detection_model))
face_detect = face_detection_model(FLAGS.face_detection_type,
FLAGS.face_detection_model)
face_files, rectangles = face_detect.run(FLAGS.filename)
print(face_files)
files += face_files
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
label_list = AGE_LIST if FLAGS.class_type == ‘age’ else
GENDER_LIST
nlabels = len(label_list)
print(‘Executing on %s’ % FLAGS.device_id)
model_fn = select_model(FLAGS.model_type)
with tf.device(FLAGS.device_id):

images = tf.placeholder(tf.float32, [None, RESIZE_FINAL,
RESIZE_FINAL, 3])
logits = model_fn(nlabels, images, 1, False)
init = tf.global_variables_initializer()

requested_step = FLAGS.requested_step if FLAGS.requested_step else
None

checkpoint_path = ‘%s’ % (FLAGS.model_dir)
model_checkpoint_path, global_step =
get_checkpoint(checkpoint_path, requested_step, FLAGS.checkpoint)

saver = tf.train.Saver()
saver.restore(sess, model_checkpoint_path)

softmax_output = tf.nn.softmax(logits)
coder = ImageCoder()
# Support a batch mode if no face detection model
if len(files) == 0:
if (os.path.isdir(FLAGS.filename)):
for relpath in os.listdir(FLAGS.filename):
abspath = os.path.join(FLAGS.filename, relpath)

if os.path.isfile(abspath) and any([abspath.endswith(‘.’ + ty) for ty
in (‘jpg’, ‘png’, ‘JPG’, ‘PNG’, ‘jpeg’)]):
print(abspath)
files.append(abspath)
else:
files.append(FLAGS.filename)
# If it happens to be a list file, read the list and clobber the
files
if any([FLAGS.filename.endswith(‘.’ + ty) for ty in (‘csv’, ‘tsv’,
‘txt’)]):
files = list_images(FLAGS.filename)

writer = None
output = None
if FLAGS.target:
print(‘Creating output file %s’ % FLAGS.target)
output = open(FLAGS.target, ‘w’)
writer = csv.writer(output)
writer.writerow((‘file’, ‘label’, ‘score’))
image_files = list(filter(lambda x: x is not None, [resolve_file(f)
for f in files]))
print(image_files)
if FLAGS.single_look:
classify_many_single_crop(sess, label_list, softmax_output, coder,
images, image_files, writer)
else:
for image_file in image_files:
classify_one_multi_crop(sess, label_list, softmax_output, coder,
images, image_file, writer)
if output is not None:
output.close()

if __name__ == ‘__main__’:
tf.app.run()

微软脸部图片识别性别、年龄网址 http://how-old.net/
。图片识别年龄、性别。依照题目查找图片。

参谋资料:
《TensorFlow才具深入分析与实战》

应接推荐新加坡机械学习职业机会,笔者的微信:qingxingfengzi